多元函数可微性判断-典型习题

本话题讨论多元函数可微性判断的相关习题, 欢迎大家参与讨论!

判断函数 z=f\left(x,y\right) 在点 (x_0, y_0) 处是否可微, 步骤如下:
(1) 写出全增量 \Delta z=f\left(x_0+\Delta x,y_0+\Delta y\right)-f\left(x_0,y_0\right);
(2) 写出线性增量 A\Delta x+B\Delta y,其中 A=f_x^{\prime}(x_0,y_0),B=f_y^{\prime}(x_0,y_0);
(3) 作极限 \lim\limits_{\Delta x \to 0 \atop \Delta y \to 0} \frac{\Delta z-(A\Delta x+B\Delta y)}{\sqrt{\left(\Delta x\right)^{2}+\left(\Delta y\right)^{2}}}, 若该极限等于0, 则 z=f(x,y) 在点 (x_0,y_0) 处可微, 否则, 就不可微.

典型习题

  1. 设函数 f(x, y) = \left\{ \begin{array}{ll} \frac{xy}{\sqrt{x^2 + y^2}}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{array} \right. , 则 f(x,y) 在点(0,0)处是否可微?
    :不可微。
    f_{x}^{\prime}(0,0)=\lim\limits_{\Delta x\to0}\frac{f(0+\Delta x,0)-f(0,0)}{\Delta x}=0.
    f_{y}^{\prime}(0,0)=\lim\limits_{\Delta y\rightarrow0}\frac{f(0,0+\Delta y)-f(0,0)}{\Delta y}=0.
    \Delta z=f(0+\Delta x,0+\Delta y)-f(0,0)= \frac{\Delta x\cdot\Delta y}{\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}}
    \lim\limits_{\Delta x\to0,\Delta y\to0}\frac{\Delta z-[f_{x}^\prime(0,0)\cdot\Delta x+f_{y}^\prime(0,0)\cdot\Delta y]}{\sqrt{{(\Delta x)^{2}+(\Delta y)^{2}}}}=\lim\limits_{\Delta x\to0,\Delta y\to0}\frac{\Delta x\cdot\Delta y}{(\Delta x)^{2}+(\Delta y)^{2}}
    x=k y, 得
    \lim\limits_{\Delta x\to0,\Delta y\to0}\frac{\Delta x\cdot\Delta y}{(\Delta x)^{2}+(\Delta y)^{2}}=\lim\limits_{\Delta x\to0,\Delta x\to0}\frac{\Delta x\cdot k\Delta x}{(\Delta x)^{2}+(k\Delta x)^{2}}=\frac{k}{1+k^2}, 极限不存在.
    所以, f(x,y) 在(0,0)点处不可微.

  2. 已知
    f(x) = \begin{cases} \frac{\sqrt{\lvert xy \rvert}}{x^2 + y^2} \sin(x^2 + y^2), & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0), \end{cases}
    判断 f(x) 在(0,0)处偏导数存在性以及可微性.

    (1)f_x^{\prime}(0,0)=\lim\limits_{\Delta x\to0}\frac{f(0+\Delta x,0)-f(0,0)}{\Delta x}=0;
    f_y^{\prime}(0,0)=\lim\limits_{\Delta y\rightarrow0}\frac{f(0,0+\Delta y)-f(0,0)}{\Delta y}=0.
    所以, f(x,y) 在(0,0)点处偏导数存在.
    (2) \lim\limits_{(x,y)\rightarrow(0,0)}\frac{\frac{\sqrt{|xy|}}{x^2+y^2}\sin(x^2+y^2)-f_x(0,0)x-f_y(0,0)y}{\sqrt{x^2+y^2}}=\lim\limits_{(x,y)\rightarrow(0,0)}\sqrt{\frac{|xy|}{x^2+y^2}}
    x=ky 时,
    \lim\limits_{(x,y)\rightarrow(0,0)}\sqrt{\frac{|xy|}{x^2+y^2}}=\lim\limits_{(x,y)\rightarrow(0,0)}\sqrt{\frac{|k|}{k^2+1}} 极限不存在,
    f(x,y)(0,0) 处不可微.

  3. f(x, y) = \begin{cases} (x^2 + y^2) \sin\frac{1}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0.\end{cases}
    f(x,y) 在点(0,0)处是否可微?
    :可微.
    f_{x}^{\prime}(0,0)=\lim\limits_{\Delta x\to0}\frac{f(0+\Delta x,0)-f(0,0)}{\Delta x}=\lim\limits_{\Delta x\to0}\frac{(\Delta x)^{2}\sin\frac{1}{(\Delta x)^{2}}}{\Delta x}=0,
    f_y^{\prime}(0,0)=\lim\limits_{\Delta y\to0}\frac{f(0,0+\Delta y)-f(0,0)}{\Delta y}=\lim\limits_{\Delta y\to0}\frac{(\Delta y)^{2}\sin\frac{1}{(\Delta y)^{2}}}{\Delta y}=0.
    \Delta z=f(0+\Delta x,0+\Delta y)-f(0,0)=[(\Delta x)^{2}+(\Delta y)^{2}]\cdot\sin\frac{1}{(\Delta x)^{2}+(\Delta y)^{2}}.
    \begin{aligned} & \lim\limits_{\Delta x\to0,\Delta y\to0}\frac{\Delta z-[f_{x}^\prime(0,0)\cdot\Delta x+f_{y}^\prime(0,0)\cdot\Delta y]}{\sqrt{{(\Delta x)^{2}+(\Delta y)^{2}}}} \\ &=\lim\limits_{\Delta x\to0,\Delta y\to0}\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}\cdot\sin\frac{1}{(\Delta x)^{2}+\Delta y)^{2}}. \end{aligned}
    \rho=\sqrt{{(\Delta x)^{2}+(\Delta y)^{2}}}, 则
    \lim\limits_{\Delta x\to0,\Delta y\to0}\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}\cdot\sin\frac{1}{(\Delta x)^{2}+\Delta y)^{2}}=\lim\limits_{ \rho\to0}\rho\cdot\sin\frac{1}{\rho^2}=0.
    所以, f(x,y) 在(0,0)点处可微.

判断如下 f(x, y) 在点 (0, 0) 处是否可微?

  1. f(x, y)=xy.
    : 可微.
    f_{x}^\prime(0, 0)=y\vert_{(0, 0)}=0, f_{y}^{\prime}(0, 0)=x\vert_{(0, 0)}=0.
    \Delta z=f(0+\Delta x, 0+\Delta y)-f(0, 0)=\Delta x\cdot\Delta y.
    \lim\limits_{\Delta x\to0, \Delta y\to0}\frac{\Delta z-[f_{x}^\prime(0, 0)\cdot\Delta x+f_{y}^\prime(0, 0)\cdot\Delta y]}{\sqrt{{(\Delta x)^{2}+(\Delta y)^{2}}}}=\lim\limits_{\Delta x\to0, \Delta y\to0}\frac{\Delta x\cdot\Delta y}{\sqrt{{(\Delta x)^{2}+(\Delta y)^{2}}}}.
    \rho=\sqrt{{(\Delta x)^{2}+(\Delta y)^{2}}}, \Delta x=\rho \cos\theta, \Delta y=\rho \sin\theta, 则
    \lim\limits_{\Delta x\to0, \Delta y\to0}\frac{\Delta x\cdot\Delta y}{\sqrt{{(\Delta x)^{2}+(\Delta y)^{2}}}}=\lim\limits_{\rho\to0}\frac{\rho^2\cos \theta\sin\theta}{\rho}=0.
    所以, f(x, y) 在(0, 0)点处可微.

  2. f(x, y)=|xy|.
    : 可微.
    f_{x}^\prime(0, 0)=0, f_{y}^{\prime}(0, 0)=0.
    \Delta z=f(0+\Delta x, 0+\Delta y)-f(0, 0)=\vert\Delta x\Delta y\vert .
    \lim\limits_{\Delta x\to0, \Delta y\to0}\frac{\Delta z-[f_{x}^\prime(0, 0)\cdot\Delta x+f_{y}^\prime(0, 0)\cdot\Delta y]}{\sqrt{{(\Delta x)^{2}+(\Delta y)^{2}}}}=\lim\limits_{\Delta x\to0, \Delta y\to0}\frac{\vert\Delta x\Delta y\vert}{\sqrt{{(\Delta x)^{2}+(\Delta y)^{2}}}}=0.
    \rho=\sqrt{{(\Delta x)^{2}+(\Delta y)^{2}}}, \Delta x=\rho \cos\theta, \Delta y=\rho \sin\theta, 则
    \lim\limits_{\Delta x\to0, \Delta y\to0}\frac{\vert\Delta x\Delta y\vert}{\sqrt{{(\Delta x)^{2}+(\Delta y)^{2}}}}=\lim\limits_{\rho\to0}\frac{\vert\rho^2\cos \theta\sin\theta\vert}{\rho}.
    所以, f(x, y) 在(0, 0)点处可微.

  3. f(x, y)=\sqrt{|xy|}.
    : 不可微.
    f_{x}^\prime(0, 0)=0, f_{y}^{\prime}(0, 0)=0.
    \Delta z=f(0+\Delta x, 0+\Delta y)-f(0, 0)=\sqrt{\vert\Delta x\Delta y\vert}.
    \lim\limits_{\Delta x\to0, \Delta y\to0}\frac{\Delta z-[f_{x}^\prime(0, 0)\cdot\Delta x+f_{y}^\prime(0, 0)\cdot\Delta y]}{\sqrt{{(\Delta x)^{2}+(\Delta y)^{2}}}}=\lim\limits_{\Delta x\to0, \Delta y\to0}\frac{\sqrt{\vert\Delta x\Delta y\vert}}{\sqrt{{(\Delta x)^{2}+(\Delta y)^{2}}}}=0.
    x=k y, 则
    \lim\limits_{\Delta x\to0, \Delta y\to0}\frac{\sqrt{\vert\Delta x\Delta y\vert}}{\sqrt{{(\Delta x)^{2}+(\Delta y)^{2}}}}=\lim\limits_{\Delta y\to0}\frac{\sqrt{\vert k\Delta y\Delta y\vert}}{\sqrt{{(k\Delta y)^{2}+(\Delta y)^{2}}}}={\frac{\sqrt{\vert k\vert}}{\sqrt{k^2+1}}}.
    极限不存在.
    所以, f(x, y) 在(0, 0)点处不可微.

  4. f(x, y)=\sqrt{x^2+y^2}.
    : 不可微.
    f^\prime_{x} (0, 0)=\lim\limits_{\Delta x\to0}\frac{f(\Delta x, 0)-f(0, 0)}{\Delta x}=\lim\limits_{\Delta x\to0}\frac{\sqrt{\Delta x}}{\Delta x}=\lim\limits_{\Delta x\to0}\frac{|\Delta x|}{\Delta x}.
    f^\prime_{y} (0, 0)=\lim\limits_{\Delta y\to0}\frac{f(\Delta y, 0)-f(0, 0)}{\Delta y}=\lim\limits_{\Delta y\to0}\frac{\sqrt{\Delta y}}{\Delta y}=\lim\limits_{\Delta y\to0}\frac{|\Delta y|}{\Delta y}.
    由于 f^\prime_{x} (0, 0), f^\prime_{y} (0, 0) 极限不存在.
    所以, f(x, y) 在(0, 0)点处不可微.

  5. f(x, y)=\sqrt{x^4+y^4}.
    : 可微.
    f_{x}^\prime(0, 0)=0, f_{y}^{\prime}(0, 0)=0.
    \Delta z=f(0+\Delta x, 0+\Delta y)-f(0, 0)=\sqrt{(\Delta x)^4+(\Delta y)^4}.
    \lim\limits_{\Delta x\to0, \Delta y\to0}\frac{\Delta z-[f_{x}^\prime(0, 0)\cdot\Delta x+f_{y}^\prime(0, 0)\cdot\Delta y]}{\sqrt{{(\Delta x)^{2}+(\Delta y)^{2}}}}=\lim\limits_{\Delta x\to0, \Delta y\to0}\frac{\sqrt{{(\Delta x)^4+(\Delta y)^4}}}{\sqrt{{(\Delta x)^{2}+(\Delta y)^{2}}}}=0.
    \rho=\sqrt{{(\Delta x)^{2}+(\Delta y)^{2}}}, \Delta x=\rho \cos\theta, \Delta y=\rho \sin\theta, 则
    \lim\limits_{\Delta x\to0, \Delta y\to0}\frac{\sqrt{{(\Delta x)^4+(\Delta y)^4}}}{\sqrt{{(\Delta x)^{2}+(\Delta y)^{2}}}}=\lim\limits_{\rho \to 0}\frac{\sqrt{{\rho^4((\cos\theta)^4+(\sin\theta)^4)}}}{\rho}=0.
    所以, f(x, y) 在(0, 0)点处可微.

  6. f(x, y)=\sqrt{|x^3+y^3|}.
    : 可微.
    f_{x}^\prime(0, 0)=0, f_{y}^{\prime}(0, 0)=0.
    \Delta z=f(0+\Delta x, 0+\Delta y)-f(0, 0)=\sqrt{\vert(\Delta x)^3+(\Delta y)^3\vert}.
    \lim\limits_{\Delta x\to0, \Delta y\to0}\frac{\Delta z-[f_{x}^\prime(0, 0)\cdot\Delta x+f_{y}^\prime(0, 0)\cdot\Delta y]}{\sqrt{{(\Delta x)^{2}+(\Delta y)^{2}}}}=\lim\limits_{\Delta x\to0, \Delta y\to0}\frac{\sqrt{\vert(\Delta x)^3+(\Delta y)^3\vert}}{\sqrt{{(\Delta x)^{2}+(\Delta y)^{2}}}}=0.
    \rho=\sqrt{{(\Delta x)^{2}+(\Delta y)^{2}}}, \Delta x=\rho \cos\theta, \Delta y=\rho \sin\theta, 则
    \lim\limits_{\Delta x\to0, \Delta y\to0}\frac{\sqrt{\vert(\Delta x)^3+(\Delta y)^3\vert}}{\sqrt{{(\Delta x)^{2}+(\Delta y)^{2}}}}=\lim\limits_{\rho \to 0}\frac{\sqrt{\vert{\rho^3((\cos\theta)^3+(\sin\theta)^3)\vert}}}{\rho}=0.
    所以, f(x, y) 在(0, 0)点处可微.

  7. f(x, y)=\left\{ \begin{matrix}{\dfrac{xy}{x^{2}+y^{2}}}, &{x^{2}+y^{2}\neq 0, }\\ 0, & x^{2}+y^{2}=0. \end{matrix}\right.
    : 不可微.
    f_{x}^\prime(0, 0)=0, f_{y}^{\prime}(0, 0)=0.
    \Delta z=f(0+\Delta x, 0+\Delta y)-f(0, 0)=\frac{\Delta x \Delta y}{(\Delta x)^2+(\Delta y)^2}.
    \lim\limits_{\Delta x\to0, \Delta y\to0}\frac{\Delta z-[f_{x}^\prime(0, 0)\cdot\Delta x+f_{y}^\prime(0, 0)\cdot\Delta y]}{\sqrt{{(\Delta x)^{2}+(\Delta y)^{2}}}}=\lim\limits_{\Delta x\to0, \Delta y\to0}\frac{\Delta x \Delta y}{({{(\Delta x)^{2}+(\Delta y)^{2}}})^\frac{3}{2}}.
    x=k y, 则
    \lim\limits_{\Delta x\to0, \Delta y\to0}\frac{\Delta x \Delta y}{({{(\Delta x)^{2}+(\Delta y)^{2}}})^\frac{3}{2}}=\lim\limits_{\Delta x\to0, \Delta y\to0}\frac{k\Delta y \Delta y}{({{(k\Delta y)^{2}+(\Delta y)^{2}}})^\frac{3}{2}}= \infty .
    所以, f(x, y) 在(0, 0)点处不可微.